PROJECT COMPLETION REPORT

- **1. Title of the Project:** "Development of catalytic reaction strategies for the synthesis and functionalization of potential bioactive heterocyclic molecules"
- 2. Principal Investigator : Dr. Anindita Dewan
- 3. Mentor: Professor A. J. Thakur
- **4. Implementing Institution and other collaborating Institution(s):** Tezpur University,
- **5. Date of Commencement: 0**4/10/2019
- 6. Planned Date of Completion: 03/10/2022
- 7. Actual Date of Completion: 03/10/2022
- 8. Objectives as stated in the project proposal:
 - Development of new transition metal based (Pd, Cu & Rh) homogeneous and heterogeneous catalyst for the synthesis and functionalization of bioactive heterocyclic molecules. NOSE approach will be employed to get better yield, selectivity and reusability. Bio-based support will be developed for synthesis of heterogeneous catalyst.

Following relations will be carried out using newly developed catalyst systems

- 2. Sequential synthesis of carbazoles from aryl and heteroarylboronic acids via C-H activation
- 3. Sequential synthesis of acridones from aryl and heteroarylboronic acids via Oxidative C-H/C-H Carbonylation
- 4. Synthesis of chromone or quinolone and indole derivatives via tandem Sonogashira coupling and cylization reaction
- 5. Synthesis of isocoumarins via tandem coupling and cyclization reaction of oiodobenzoic acid with terminal alkynes.

- 6. Functionalization of heteroaromatic compounds by cross coupling strategies
- Newly synthesized catalyst and heterocyclic molecules will be characterized by modern analytical and spectroscopic tools such as TEM, SEM, EDX, PXRD, FTIR, UV-Vis, ¹H & ¹³CNMR, and HRMS
- **9.** Deviation made from original objectives if any, while implementing the project and reasons thereof: There is no deviation from the original objectives.
- 10. Experimental work giving full details of experimental set up, methods adopted, data collected supported by necessary table, charts, diagrams & photographs:

Fruit peel
$$\xrightarrow{MW}$$
 NanoCellulose $\xrightarrow{Biogenic Pd NPs}$ PdNPs/NanoCellulose

We have try to develop a renewable, recyclable, nature benign bionanocellulose based honey comb like heterogeneous surface from waste fruits peel by simple microwave technique in pure water without using any other external chemicals within very short reaction time under neutral reaction conditions. The Pd nanoparticles are loaded on the bionanocellulose surface by simple stirring at room temperature and characterized by several sophisticated analytical tools like XRD, SEM, TEM, FTIR, BET etc.

Figure 2(a-d) SEM images of Pd NP supported NanoCellulose

Figure 3 TEM images of (a) NanoCellulose (b) and (c) Pd NP@ NanoCellulose; (d) HRTEM image and SAED pattern of Pd NP@ NanoCellulose

Figure 4 N_2 adsorption/desorption isotherm of (I) NanoCellulose and (II) Pd NP@ NanoCellulose and inset in (I) & (II) are the pore size distribution curves

Figure 5 Powder XRD spectra of (**a**) NanoCellulose and (**b**) PdNP@NanoCellulose

5					Element	Weight%	Atomic%
ľ.					СК	67.36	73.81
					ОК	31.57	25.97
					КК	0.40	0.14
à					Pd L	0.66	0.08
T					Totals	100.00	
	5	10	15	20			
Full Scale	17102 cts	Cursor: 0.000					k

Figure6EDXimagesofPdNP@NanoCellulose

The newly developed heterogeneous nanocomposite material has been utilized as efficient heterogeneous catalyst PdNPs@NanoCellulose (PdNP@H(M) for the synthesis of potential bioactive biaryl/heterobiaryl up to 98% yield via Suzuki-Miyaura reaction (**Scheme 1**). The catalyst is reusable up to six catalytic circles without significant loss of its catalytic activity.

Scheme 1: PdNP@NanoCellulose catalyzed Suzuki-Miyaura reaction

The same heterogeneous catalyst PdNPs@NanoCellulose (PdNP@H(M)) has been applied for the synthesis of potential bioactive alkynyl/heteroalkynyl derivatives via Sonogashira reaction in excellent yield (**Scheme 2**).

Scheme 2: PdNPs@NanoCellulose catalyzed Sonogashira reaction

[This work is published ACS Sustainable Chem. Eng. 2021, 9, 954–966]

Next, here we have try to reports the design, synthesis and application of naturally occurring cellulose, generated from agro waste pomegranate peel, as novel supports for active biogenic Pd(0) nanoparticles (NPs) (**Scheme 3**) for room temperature Suzuki-Miyaura and Sonogashira cross-coupling reactions. The Pd nanoparticles are loaded on the bionanocellulose surface by simple stirring at room temperature and characterized by several sophisticated analytical tools like XRD, SEM, TEM, FTIR, BET etc.

Figure 7: SEM images of (a) CNF and (b), (c) & (d) of Pd@CNF

Figure 8: TEM images of (a) CNF, (b), (c) and (d) Pd@CNF; (e) HRTEM image and (f) SAED pattern of Pd@CNF

Figure 9: N₂ adsorption/desorption isotherms of (**a**) CNF (**b**) Pd@CNF, and inset in (**3a**) & (**3b**) are the pore size distribution curves

Figure 10: Powder XRD spectra of (a) CNF (b) Pd@CNF and (c) PdNP

2				Element	Weight %	Atomic %
S				СК	40.77	51.66
5				O K	48.30	45.95
1				Na K	0.10	0.07
				Mg K	0.14	0.09
				CIK	0.59	0.25
				KK	1.49	0.58
2. 🔞				Ca K	0.69	0.26
9 To				As L	0.28	0.06
₩ 6 <u>.</u>				PdL	7.63	1.09
100 TOP				Totals	100.00	
5	10	15	20			10
Full Scale 24179 cts Cur	sor: 0.000					ke

Figure 11: EDX image of Pd@CNF

In order to reveal the incorporation in Pd NPs in CNF, ICP-OES analysis of Pd@CNF was performed, and it was found that 1 gram of solid Pd@CNF contains 15 mg palladium.

The catalytic reactivity of this newly developed heterogeneous biodegradable catalyst (Pd@CNF) has been utilised for the synthesis of potential bioactive biaryl up to 98% yield via Suzuki-Miyaura cross-coupling reaction.

Scheme 4: Pd@CNF catalysed Suzuki–Miyaura reaction

The same heterogeneous catalyst Pd@CNF has been applied for the synthesis of potential bioactive alkynyl derivatives via Sonogashira reaction in excellent yield

$$R^{1} \xrightarrow{\text{Catalyst (10 wt \%), H_2O/EtOH}} R^{1} \xrightarrow{\text{R}^{2}} R^{2}$$

Scheme 5: Pd@CNF catalysed Sonogashira coupling of aryliodides and terminal acetylene

The catalyst is reusable up to fifth catalytic circles without significant loss of its catalytic activity.

Figure 12: (a,b) TEM and (c) HRTEM images of Pd@CNF after 5th reuse, and (d) SAED pattern of Pd@CNF.

This work presents the utilization of natural organic waste for the synthesis of stable, renewable, recyclable cellulosic nanofibers and Pd-anchored heterogeneous nanofibers. The *in-situ* generation and immobilization of biogenic PdNPs to cellulosic nanofibers demonstrated outstanding catalytic effectiveness in promoting Suzuki-Miyaura and Sonogashira cross-coupling reaction under ligand-free and mild reaction conditions. The newly developed bio-based heterogeneous catalyst Pd@CNF is reusable up to five catalytic cycles without significant loss of catalytic activity.

[This work is published in Sustainable Chemistry and Pharmacy, 2021, 23, 100502]

Next, we have utilized a potent natural organic waste material in the synthesis of stable bimetallic Pd/Ag nanoparticles in a cost-effective and environmental approach.

The formation of bimetallic nanohybrid was confirmed by standard analytical techniques such as TEM, SEM, EDX, PXRD and ICP-AES analysis. The synthesized nanoparticles demonstrated outstanding catalytic effectiveness in promoting Suzuki-Miyaura cross coupling of heteroaryl compounds. The protocol enabled the preparation of a range of *N*-heterocyclic biaryl compounds under ambient conditions with a low catalyst loading. The synergic interactions between the two metals existing adjacent to each other in the nanohybrid resulted in its catalytic enhancement for the cross-coupling reaction. The methodology opens the opportunity for the large-scale synthesis of active biological targets in a green and economical manner.

Figure 13. (a) PXRD pattern, (b) EDX pattern, and (c,d) SEM images of bimetallic Pd/Ag NPs.

Figure 14 (a,b) TEM images, (c) HRTEM image, and (d) SAED image of bimetallic Pd/Ag NPs.

The reactivity of waste-derived bimetallic Pd/Ag NPs in heterocylic series is unknown and the reaction condition must be improved in terms of green chemistry (solvent, reaction parameters and recycling). To determine the efficiency of the synthesized Pd/Ag NPs towards the Suzuki-Miyaura cross-coupling reaction, we considered 3-bromopyridine and phenylboronic acid as the model substrates in the presence of K_2CO_3 as base.

To determine the usefulness of bimetallic Pd/Ag NPs in the current methodology, we performed a reaction with monometallic Pd NPs synthesized by same bio-reduction technique in our laboratory and observed 78% yield of the desired product in 8 h. The result indicates the synergic ability of AgNPs in assisting PdNPs in the catalytic enhancement of the cross-coupling reaction.

Table 3:

Suzuki-Miyaura coupling of *N*-heteroaryl halides and arylboronic acids^{*a*}

	V(Het)A) X + R	B(OH) ₂ Pd/Ag NPs, K EtOH-H ₂ O, R	r, 2 h	
Entry	Heteroaryl	Arylboronic acids	Product	Yield ^b
	halides			(%)
1	Br	B(OH) ₂		92
2	Br	MeO B(OH) ₂	NOMe	88
3	Br	B(OH) ₂		89
4	Br	Cl B(OH) ₂		81
5	N Br	B(OH) ₂		85

^{*a*}Reaction conditions: heteroaryl halide (0.5 mmol), arylboronic acid (0.6 mmol), Pd/Ag NPs (0.01 mmol), K₂CO₃ (1.5 mmol), H₂O-EtOH (4 ml), RT, 2 h, air; ^{*b*}yield.

Table 4:

Suzuki-Miyaura coupling of aryl halides and N-heteroarylboronic acids^a

^{*a*}Reaction conditions: aryl halide (0.5 mmol), heteroarylboronic acid (0.6 mmol), Pd/Ag NPs (0.01 mmol), K₂CO₃ (1.5 mmol), H₂O-EtOH (4 ml), RT, 2 h, air; ^{*b*}yield; ^{*c*}reaction time 6 h; ^{*d*}reaction time 12 h.

Table 5:

Suzuki-Miyaura coupling of N-heteroaryl halides and N-heteroarylboronic acids^a

	V(Het)AT + (V	$\begin{array}{c} \begin{array}{c} B(OH)_2 \\ \hline \\ EtOH-H_2O, \end{array} \end{array} \begin{array}{c} Pd/Ag NPs, \\ \hline \\ \end{array}$	K ₂ CO ₃ RT, 2 h	
Entry	Heteroryl	Heteroarylboronic	Product	Yield ^b
	halides	acids		(%)
1 ^c	Br	B(OH) ₂		10
2	Br	MeO N B(OH) ₂	MeO-	84
3	N Br	MeO N B(OH) ₂	$MeO - \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	83
4	Br	MeO N B(OH) ₂	MeO-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	80
5 ^{<i>d</i>}	Br	MeO N B(OH) ₂	MeO N	76

^{*a*}Reaction conditions: heteroaryl halide (0.5 mmol), heteroarylboronic acid (0.6 mmol), Pd/Ag NPs (0.01 mmol), K_2CO_3 (1.5 mmol), H_2O -EtOH (4 ml), RT, 2 h, air; ^{*b*}yield; ^{*c*}reaction time 12 h; ^{*d*}temperature 40 °C, reaction time 5 h.

This work is published in Green Chem., 2022, 24, 7208-7219.

Next, this work demonstrated that lignocellulose derived from pomegranate peels can be utilized as a highly adaptable material for anchoring Pd nanoparticles, both in terms of its production route and material efficiency. The micrographs of lignocellulose-supported Pd nanomaterials showcase the synthesized Pd nanoparticles fairly entangled in the spider-web like 3D bio-network which stabilizes their dispersion. The synthesized Pd NPs@LCpp displayed remarkable catalytic proficiency in site-selective C2-H arylation of *N*-H indoles with anylboronic acids without resorting to directing group instalment on substrate. Compared to our previously developed methodology, the present catalyst system showed remarkable functionality tolerance towards indole bearing free N-H group. The presence of lignocellulosic support offers multifunctional features over conventional Pd catalysis, in terms of improved activity, selectivity, free N-H functionality tolerance, minimal metal leaching, and reusability for at least five reaction cycles, thus improving the overall efficiency of the process. Optimization of the method revealed the potential for minimizing Ag consumption throughout the re-cyclability course. The new catalyst was also found to be active for selective double functionalization of indole frameworks in a one-pot system. The sustainability profile presented by the process, unfolds a straightforward and scalable route to production of raw biomass-based supported nanomaterials of high potentials.

Figure 15: SEM micrographs of (a, b) LCpp, (c-e) Pd NPs@LCpp, and corresponding (f-h) EDX elemental mapping images

Figure 16 (a-c): TEM images, (d) particle size distribution histogram (e) HRTEM image, (f) SAED pattern, and (g) EDX image of Pd NPs@LCpp

Figure 17 (a) Survey scans XPS spectrum of Pd NPs@LCpp and corresponding high-resolution XPS spectra of (b) Pd 3d, (c) C 1s and (d) O 1s

Figure 18 (a) Powder XRD patterns, (b) FTIR spectra of LCpp and Pd NPs@LCpp, N_2 adsorption/desorption isotherms of (c) LCpp and (d) Pd NPs@LCpp and inset in (c, d) shows the BJH pore size distribution curves

In our desire to appraise the catalytic effectuality of the as-prepare PdNPs@LCpp, we employed it as a catalyst in the C2-H arylation of indoles with arylboronic acids in the absence of any ligands or directing groups.

Scheme A

Table 6: Substrate scope for C2-H arylation of indoles with arylboronic acids^{*a*}

^{*a*}Reaction conditions: indole (1 mmol), boronic acid (1.2 mmol), Pd NPs@LCpp (10 wt %, 0.001 mmol Pd), AgTFA (0.5 mmol), MeOH)/H₂O (5:1) 2mL, temperature (50 °C), time (5 h), in air; ^{*b*}reaction time (12 h)

On a similar line (Scheme 2(II)), *N*-methyl indole 1a was allowed to react with 4bromophenylboronic acid 2, where the C2 arylated product 3b' was double functionalized to 2-([1,1'-biphenyl]-4-yl)-*N*-methyl indole 4b in one-pot process. Thus, the method extends introduction of additional functionalities in the indole heterocyclic cores, thereby increasing their synthetic value. The Pd NPs@LCpp proved highly effective in both the steps of sequential transformations in a very low Pd loading, avoiding any further addition for the subsequent step.

Scheme B (I, II) Sequential one-pot double functionalization of indoles

Scheme : Plausible mechanism for C2-H arylation of indoles with arylboronic acids

Recyclability study:

1 a		cycle	1 st run	2 nd run	3 rd run	4 th run	5 th run
+	conditions	Yield (%)	91	91	86	85	80
2a		Oxidant (eq.)	0.5	0.3	0.2	0.2	0.2

Reaction conditions: indole (1 mmol), boronic acid (1.2 mmol), Pd NPs@LPP (10 wt %, 0.001 mmol Pd), MeOH)/H₂O (5:1) 2 mL, temperature (50 °C), time (5 h), in air.

Table 7: Reusability test for Pd NPs@LCpp

Figure 19: High-resolution XPS spectra of (a) Pd 3d and (b) Ag 3d, (c,d) TEM images of recycled Pd NPs@LCpp catalyst

Cu2O/Cu nanocatalyst was prepared by simple in situ gas phase H2O/O2 stimulating approach via deposition of Cu2O on the surface of Cu nanoparticles (NPs) using aqueous extract of papaya peel. The synthesized hybrid copper catalyst offers an

efficient methodology for Pd-free Sonogashira and Chan–Lam cross-coupling reactions. A site-selective type catalytic activity was observed in Sonogashira coupling reaction by performing a controlled experiment using Cu (0) and the hybrid Cu2O/ Cu nanocatalyst. It is characterized by solid UV-visible spectroscopy, Fourier transform infrared (FTIR spectroscopy), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). XRD and XPS analysis confirmed the formation of the Cu (0) and Cu2O NPs. The Cu2O/ Cu NPs appear two different phases distributed like a lamellar sheet stacked one above the other. The presence of Cu2O phase in hybrid nano catalyst provides an attractive advantage highlighting a Cu (I)-Cu (0) synergistic interaction in the respective cross-coupling reaction.

Figure 2 (a) Solid state UV/Vis spectra of Cu-433K and Cu-463K (b) Powder XRD pattern of Cu(OAc)₂, Cu-433K and Cu-463K.

Figure 5 EDS maps (a) electron image (b) Cu distribution (c) O distribution (d) Cu and O distribution of Cu-463K

Figure 6 The SEM images of Cu-463K

Figure 7 TEM and HRTEM images and inset in (c) is the SAED pattern of the Cu-463K NPs; e) Particle size distribution histogram

Initially, the catalytic activities of the copper NPs were investigated for Sonogashira cross-coupling reaction considering 4-iodoanisole and phenylacetylene as the model substrate. The reaction was performed under a N_2 atmosphere using K_2CO_3 as a base in

DMF as the reaction medium. A significant difference in catalytic activity for both the copper NPs was observed with Cu-463K being more competent than Cu-433K (**Scheme 1**).

R ¹)—I + <u>—</u> -	-R ² Cu-463K, DMF, 90 °	$\begin{array}{c} Cu-463K, K_2CO_3 \\ \hline DMF, 90 \ ^\circ C, N_2 \end{array} \xrightarrow{R^1} \\ R^1 \end{array}$				
Entry	\mathbf{R}^1	R^2	Time(h)	Yield (%) ^[b]			
1	4-NO ₂	C ₆ H ₅	12	90			
2	4-COMe	C_6H_5	12	91			
3	4-Br	C_6H_5	24	70			
4	4-OMe	C_6H_5	24	80			
5	3-NO ₂	C_6H_5	12	85			
6	3-CHO	C_6H_5	24	80			
7	4-NO ₂	4-MeC ₆ H ₅	12	90			
8	4-COMe	3-MeC ₆ H ₅	24	80			
9	3-	C_6H_5	12	60			
	Iodopyridine						

Table 2 Sonogashira cross-coupling of aryl iodides and phenylacetylene

^[a] Reaction conditions: aryl iodide (0.5mmol), phenylacetylene (0.6 mmol), Cu-463K (10 wt%), K₂CO₃ (2 mmol), DMF (4 mL), N₂ atm;
^[b] Isolated yield

Next, the catalytic efficiency of the Cu/Cu₂O NPs (Cu-463K) was examined towards C-N cross-coupling of aryl boronic acids with imidazoles.

Table 4a. Substrate scope for C-N cross coupling reaction for Imidazole(s) and arylboronic acids.

Table 4b. Substrate scope for C-N cross coupling reaction for Benzimidazole and arylboronic acids.

The present methodology highlights an economical alternative strategy for the synthesis of copper NPs using agro-waste material. The *in-situ* fabrication of Cu₂O particles on the Cu surface *via* gas phase H_2O/O_2 stimulation without the assistance of conventional reducing agents opens up a newer perspective for the generation of metal NPs. Moreover, the system highlights an efficient palladium free-Sonogashira coupling

reaction avoiding any undesired side product. In addition diverse N-arylated imidazole/benzimidazole could be synthesised using the hybrid Cu_2O/Cu NPs The synergistic action between the biphasic Cu(0) and Cu(I) surface shows excellent activity in and C-C/C-N coupling of arylboronic acid with reusability of C-N coupling without significant loss in its activity. Moreover, as future scope, this synthetic methodology can be extended to the synthesis of tri-phasic $Cu/Cu_2O/CuO$ NPs or bi/trimetallic heterogeneous catalytic system, which might be effective in different catalytic organic transformations.

11. Detailed analysis of results indicating contributions made towards increasing the state of knowledge in the subject:

Recently, there is a renewed interest in using green chemistry principles in the field of research addressing current requirements in synthetic chemistry and catalysis. Green chemistry is the design, development and implementation of chemical products and processes to reduce the use and generation of substances hazardous to human health and the environment. The extraction and isolation of nanocellulose (as support for metal neno particles) from biomass involve some vigorous pre-treatment processes, directing the elimination of non-cellulosic components, such as polymers of free sugar, fatty acids, flavonoids, terpenoids, hemicellulose and lignin, carried out in a number of chemical, mechanical, and combined methods. Also, the use of harsh chemicals for cellulose extraction is not considered as "green", negatively interrupting the process through the generation of toxic and hazardous wastes, material contamination, degradation, and overall environmental stress. Recently, a variety of advanced methods such as ionic liquid treatments, use of deep eutectic solvents, microwave and ultrasonic treatments, have also been explored. In this regard, development of a simple extraction method to isolate cellulose fibers from waste fruit peels without using sophisticated chemical pretreatments or techniques goes in line with environmental preservations and sustainability. Cellulose is an important biopolymer and has received attention as a renewable, nontoxic, inexpensive, and biodegradable plant-derived material. Micro- and nanocrystalline cellulose exhibits unique properties such as high surface area, availability of a large number of unsaturated hanging bonds on their surfaces, and tenability which make it an appropriate candidate for a wide range of applications such as biomedical products, nanocomposite materials, textiles, heterogeneous surfaces, and so on.

Moreover, the development of the field of green chemistry through organic reactions conducted in aqueous solvent has become one of the most exciting research endeavours for organic chemists. Actually, water is an attractive alternative to traditional organic solvents because it is inexpensive, non-flammable, non-toxic, and environmentally sustainable by alleviating the problem of pollution by organic solvents. Also, water is an attractive solvent for metal-catalyzed reactions, such as C-C couplings and C-N couplings. Furthermore, from the commercial point of view, lack of possibility of reuse of such costly homogeneous catalysts makes their widespread or industrial use less viable. So by using supported or impregnated heterogeneous catalyst will obviously be a better alternative.

12. Conclusions summarising the achievements and indication of scope for future work:

- a) Here we have synthesised a renewable, recyclable, environmental benign bionanocellulosebased honeycomb-like heterogeneous surface from waste pomegranate peel using a simple microwave technique in pure water without using any other external chemicals within a very short reaction time under neutral reaction conditions. In situ generation and immobilization of biogenic PdNPs onto NCmw make it an effective heterogeneous catalyst for biaryls and alkynyl derivative synthesis via the Suzuki–Miyaura and Sonogashira cross-coupling reaction. This method is extremel important from the green and sustainable chemistry point of view by utilizing waste materials as renewable sources for a reusable catalyst.
- b) We have also utilized natural agro waste for the synthesis of stable, renewable, recyclable cellulosic nanofibers and Pd-anchored heterogeneous nanofibers. The *in-situ* generation and immobilization of biogenic PdNPs to cellulosic nanofibers demonstrated outstanding catalytic effectiveness in promoting Suzuki-Miyaura

and Sonogashira cross-coupling reaction under ligand-free and mild reaction conditions. The newly developed bio-based heterogeneous catalyst Pd@CNF is reusable up to five catalytic cycles without significant loss of catalytic activity.

- c) Again we have developed a novel micro-dimensional cellulose fibers from biomass waste using a simple ethanol-water filtration technique. The pomegranate peel derived cellulose micro-fibers presented as an admirable support matrix for bimetallic Pd-Ag nanoparticles. The synergistic visible-light harvesting and electronically interacting centres developed a novel plasmon-enhanced photocatalyst in promoting Suzuki-Miyaura coupling in exciting nitrogen heterocycles at room temperature under visible light.
- d) We have also synthesized lignocellulose derived from pomegranate peels can be utilized as a highly adaptable material for anchoring Pd nanoparticles, both in terms of its production route and material efficiency. The micrographs of lignocellulose-supported Pd nanomaterials showcase the synthesized Pd nanoparticles fairly entangled in the spider-web like 3D bio-network which stabilizes their dispersion. The synthesized Pd NPs@LCpp displayed remarkable catalytic proficiency in site-selective C2-H arylation of N-H indoles with arylboronic acids without resorting to directing group instalment on substrate. Compared to our previously developed methodology, the present catalyst system showed remarkable functionality tolerance towards indole bearing free N-H group. The presence of lignocellulosic support offers multifunctional features over conventional Pd catalysis, in terms of improved activity, selectivity, free N-H functionality tolerance, minimal metal leaching, and reusability for at least five reaction cycles, thus improving the overall efficiency of the process. Optimization of the method revealed the potential for minimizing Ag consumption throughout the re-cyclability course. The new catalyst was also found to be active for selective double functionalization of indole frameworks in a one-pot system. The sustainability profile presented by the process, unfolds a straightforward and scalable route to production of raw biomass-based supported nanomaterials of high potentials.
- e) We have also developed a methodology for the synthesis of copper NPs using agro-waste material. The *in-situ* fabrication of Cu₂O particles on the Cu surface

via gas phase H_2O/O_2 stimulation without the assistance of conventional reducing agents opens up a newer perspective for the generation of metal NPs. Moreover, the system highlights an efficient palladium free-Sonogashira coupling reaction avoiding any undesired side product. In addition diverse N-arylated imidazole/benzimidazole could be synthesised using the hybrid Cu₂O/Cu NPs The synergistic action between the biphasic Cu(0) and Cu(I) surface shows excellent activity in and C-C/C-N coupling of arylboronic acid with reusability of C-N coupling without significant loss in its activity. Moreover, as future scope, this synthetic methodology can be extended to the synthesis of tri-phasic Cu/Cu₂O/CuO NPs or bi/trimetallic heterogeneous catalytic system, which might be effective in different catalytic organic transformations.

13. New Observations:

- a) These heterogeneous nano-catalysts can be easily synthesized at room temperature.
- b) It is efficient catalyst for Suzuki-Miyaura, Sonogashira and Chan-Lam type crosscoupling reaction under mild reaction condition.
- c) We have developed a novel heterogeneous Pd-Ag bimetallic nanoclusters ascatalyst which has interfacial electron-transfer from plasmonic metal Ag to Pd makes suitable for room temperature Suzuki-Miyaura coupling of nitrogen-rich heterocycles (74-93 %) under visible light condition.
- d) We have also developed Pd based lignocellulose supported catalytic proficiency in site-selective C2-H arylation of *N*-H indoles with arylboronic acids without resorting to directing group instalment on substrate.
- e) We have also synthesised heterogeneous Cu₂O/Cu nanocatalysts and used it for N-arylated imidazole/benzimidazole and Pd-free Sonogashira coupling reaction.

14. Innovations:

We have developed some renewable, recyclable, environmental benign bionanocellulose based heterogeneous surface and catalyst from waste fruits peel using a simple easy and green technique. The Suzuki-Miyaura, Sonogashira type crosscoupling, site-selective C2-H arylation of *N*-H indoles with arylboronic acids without resorting to directing group has been carried out at room temperature using green solvent and green methods. Also developed a novel heterogeneous Pd-Ag nanoparticles as catalyst and utilized for Suzuki-Miyaura cross-coupling reaction of nitrogen-rich heteroaromatics using visible light condition under the framework of green chemistry principles. We have also synthesised Cu based heterogeneous nanocatalysts and used it for N-arylated imidazole/benzimidazole and Pd-free Sonogashira coupling reaction.

15. Application Potential:

- a. Immediate: Developed some renewable, recyclable, environmental benign heterogeneous catalyst using natural agro waste and utilized these catalyst for Suzuki-Miyaura, Sonogashira cross-coupling, Chan-Lam type and Indol functionalization reaction under green condition
- b. Long Term: A remarkable amount of progress can be achieved toward solving the long-standing challenge of developing readily available and additives for cross coupling reactions using appropriate choice of catalyst.

16. S&T benefits accrued:

S	Authors	Title of paper	Name of	Vol	Pages	Year
No			the	ume		
			Journal			
1.	Anindita Dewan, *	Pd	ACS	9	954–966	2021

a. List of Research publications

	Manashi Sarmah,	Nanoparticles-	Sustainabl			
	Pankaj Bharali,	Loaded	e Chem.			
	Ashim J. Thakur,	Honeycomb-	Eng.			
	Purna K. Boruah,	Structured Bio-				
	Manash R. Das,	nanocellulose				
	and Utpal Bora	as a				
		Heterogeneous				
		Catalyst for				
		Heteroaryl				
		Cross-Coupling				
		Reaction				
2	Anindita Dewan *,					
	Manashi Sarmah,	Sustainable		23	100502	2021
	Prantika	nano fibrillated	Sustainabl			
	Bhattacharjee,	cellulose	e			
	Pankaj Bharali,	supported in situ	Chemistry			
	Ashim J. Thakur,	biogenic Pd	and			
	Utpal Bora	nanoparticles as	Pharmacy			
		heterogeneous				
		catalyst for C–C				
		cross coupling				
		reactions				
3	Prantika	Bimetallic Pd-	Green	24	7208-	2022
	Bhattacharjee,	Ag nanoclusters	Chem.		7219	
	Anindita Dewan*,	decorated				
	Purna K. Boruah,	micro-cellulose				
	Manash R. Das,	bio-template				
	Sanjeev P. Mahanta,	towards efficient				
	Ashim J. Thakur,	catalytic Suzuki-				
	Utpal Bora*	Miyaura				
		coupling				

		reaction of				
		nitrogen-rich				
		heterocycles				
4	P. Bora,; D.	Bio-Carbon	New J.	46	12551-	2022
	Konwar,; A.	Layered CuO	Chem.		12557	
	Dewan.; M. R Das;	Catalysed				
	U. Bora,	Decarboxylative				
		Alkenylation of				
		Cyclic Ethers				
5	Manashi Sarmah ·	Dual	Catalysis		https://do	2022
	Debasish Sarmah ·	Responsive	Letters		i.org/10.	
	Anindita Dewan ·	Sustainable			1007/s10	
	Porag Bora · Purna	Cu2O/			562-022-	
	K. Boruah · Manash	Cu Nanocatalyst			04060-w	
	R. Das ·	for Sonogashira				
	Pankaj Bharali ·	and Chan- Lam				
	Utpal Bora	Cross- Coupling				
		Reactions				
6	Sameeran Kumar	Biogenic	Current	5	100301	2022
	Das, Anindita	palladium	Research			
	Dewan, Pangkita	nanostructures	in Green			
	Deka , Rakhee	for Suzuki-	and			
	Saikia , Sanjib	Miyaura and	Sustainabl			
	Thakuria,	Sonogashira	e			
	R.C. Deka, Ashim J.	cross-coupling	Chemistry			
	Thakur , Utpal Bora	reaction under				
	,*	mild reaction				
1		1		1	1	1

- b. Manpower trained on the project
 - i) Ph.D. produced: No

ii) Other Technical Personnel trained: Ph.D and MSc student trained.

c. Patents taken, if any: No

17. Financial Position:

S	Financial Position/ Budget	Funds	Funds		% of Total
No	Head	Sanction	ned		cost
1.	Salaries/ Manpower costs	1st	Year:	19,80,000/-	
2.	Equipment	9,45,000/-		1,77,215/-	
3.	Supplies & Materials	2^{nd}	Year:	3,99,883/-	
4.	Contingencies	9,15,000/-		74,092/-	
5.	Travel	3 rd Year:		-	
6.	Overhead Expenses	7,00,000/-		1,72,851/-	
	Others, if any	27,40,000/-			
	Total			28,04,041/-	100%

18. Procurement/ Usage of Equipment

a)

S	Name of	Make/	Cost	Date of	Utilisation	Remarks
No	Equipment	Model	(FE/	Installation	Rate (%)	regarding
			Rs)			maintenance/
						breakdown
1	Laboratory	IIC-106A	49900/-	09/03/20	100%	They are all in
	Electrical					good condition
	Muffle					
	Furnace					
2	LED Digital	Tarsons	49950/-	09/03/20		
	Magnetic					
	Stirrer With					
	Hot Plate (2					
	nos.)					
3	Laboratory	R8M Plus	29880/-	09/03/20		
	Centrifuge					
4	Computer,	acer &	47,485/	29/01/21]	
	Printer	HL-L2321D				

b) Plans for utilising the equipment facilities in future:

Currently research scholars are using these equipments. Again, I will apply another new project and so for this I will use these equipment.

Name and Signature with Date

Anindité Dewan a.

(Principal Investigator)

b.

2-23 Halurs Di

(Mentor)

Dr. Ashim Jyoti Thekur Prefessor Dept. of Chemical Sciences Party University, Napam-784928

STATEMENT OF EXPENDITURE

- 1. Sanction Order No and Date: SR/WOS-A/ CS-86/2018
- 2. Total Project Cost: 29,45,000/-
- 3. Revised Project Cost (if applicable): 29,45,000/-
- 4. Date of Commencement: 04/10/2019
- 5. Grant received in each year:
 - a. 1st Year: 1, 80,000/- (Non-Recurring Grant) + 9, 45,000/- (Recurring Grant) = 11, 25,000/- (Grand Total)
 - b. 2nd Year: 9,15,000/-
 - c. 3rd Year: 7,00,000/-
 - d. 4th Year: 1,50,000/-
 - e. Interest, if any: 6891/- + 1128/- + 3849/-
 - f. Total (a+b+c+d): 28,90,000/-

STATEMENT OF EXPENDITURE

For the financial year wise (1st April 2022 to 4th Oct 2022)

S	Sanctioned	Sanctioned		Expenditure Incurred				Total	Balance as	Require	Remarks
No	Heads	Cost		. st	and		1	Expenditure	on (date)	ment of	(if any)
	n ¹⁰ - ¹⁴		Grant	1 st Year	2 nd Year	3 ^{ru} Year &	(1 st April	IV + V + VI		Funds	
	e	(1 st Year +	Received	(4 th Oct	(1 st April	so on	2022 to	+[VI(a)]	NID	for Last	
	8 - s	2 nd Year +		2019 to	2020 to	(1 st April	4 th	·[·*(•)]	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vear	<i>"</i> , °
		3 rd Year)		31 st	31 st	2021 to	October			ycai	a
	(11)	,	(A)	March	March	31 st March	2022)	(VII)		-	=
(I)		(JIII)		2020)	2021)	2022)	[VI(a)]				
		(III)		(IV)	(V)	(VI)	1. (7)		20		
1.	Fellowship	19,80,000/-	9,45,000/-	2,69,677/	7,15,000/	6,60,000/-	335,323/-	19,80,000/-	6 A		2,785/-
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(1 st year)	-	-						(refunded on
2.	Consumables	4,00,000/-	+ 9,15,000/-	1.06.647/	24.914/-	2.03.597/-	64.725/-	399 883/-			9/11/2021)
			(2 nd year)	-		_,,	.,			2.	<i>Ser 11</i> 2021
3.	Travel	60,000/-	+ 7,00,000/-	-	-	-	· · · · ·				+
4.	Contingencies	75,000/-	$(3^{rd} year)+$	· /-	29,360/-	20,000/-	24,732/-	74,092/-			
5.	Others, if any	-	150,000/-	-	· -	-	-	-			3,200/-
6.	Overhead	2,50,000/-	(4 th year)	56,250/-	51,963/-	64,638/-	77.144/-	2,49,995/-			(refunded on
A	expenses							_, ,	60	2 ¹⁰ 2	2/5/2023)
7.	Total(without	2765000/-	27,10,000/-	432574/-	821237/-	948235/-	5,01,924/	27,03,970/-		2	and a second to recommendation of
	equipment)						-		-		
8.	Equipment	1,80,000/-	180,000/-	1,29,730/	47,485/-	-	-	1,77,215/-			
				-	a in an anna 18						
9.	Total(with	29,45,000/-	28,90,000	5,62,304/	868722/-	9,48,235/-	5,01,924/	28,81,185/-	2,830/-		
	equipment)		3	· · · · · -			-				

Anindila Dewom

(Dr. Anindita Dewan) Name and Signature of Principal Investigator Date 3/10/2.3

W.X.W. Signature of Competent financial authority: (with seal) ance Officer Date: Tespur University

* DOS – 4th October 2019

Note :

- 1. Expenditure under the sanctioned heads, at any point of time, should not exceed funds allocated under that head, without prior approval of DST i.e. Figures in Column (VIII) should not exceed corresponding figures in Column (III)
- 2. Utilisation Certificate for each financial year ending 31st March has to be enclosed along with request for carry-forward permission to the next financial year.

GFR 12 - A

[(See Rule 238 (1)]

FORM OF UTILIZATION CERTIFICATE

FOR AUTONOMOUS BODIES OF THE GRANTEE ORGANIZATION

UTILIZATION CERTIFICATE FOR THE YEAR 1st April 2022 to 4th October 2022 in respect of recurring GRANTS-IN-AID/SALARIES/CREATION OF CAPITAL ASSETS

- Name of the Scheme :
 WOS-A Reference No:
- Women Scientist SchemeA (WOS-A) SR/WOS-A/CS-86/2018 (C)

- 3. Principal Investigator:
- Dr. Anindita Dewan
- 4. Whether recurring or non-recurring grants: Recurring Grant
- 5. Grants position at the beginning of the Financial year
 - (i) Cash in Hand/Bank: 3,57,954/-
 - (ii) Unadjusted advances:
 - (iii) Total: 3,57,954/-
- 6. Details of grants received, expenditure incurred and closing balances: (Actuals)

Unspent	Interest	Interest	Grant received during the year			Total	Expenditure	Closing	
Balances of	Earned	deposite				Available	incurred	Balances	(5-
Grants	thereon	d back to				funds (1+2-	8	6)	
received years		the				3+4)			
[figure as at		Govern						a	
Sl. No. 3 (iii)]		ment	n in an				0.		
1	2	3		4		5	6	7	
			Sanction	Date	Amount			10	
	2 ¹⁷		No.	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	10	а ¹			
а 182			(i)	(ii)	(iii)				
3,57,954/-	0	-	SR/WOS-	14/3/2023	1,50,000	5,07,954/-	5,01,924/-	6,030/-	
			A/CS-		2	-8, ° 2°		. ×	
			86/2018			11	n		
			(C)					14	

Component wise utilization of grants:

Grant-in-aid- General	Grant-in-aid-Salary	Total
1,66,601/-	3,35,323/-	5,01,924/-

Details of grants position at the end of the year

- (i) Cash in Hand/Bank: 2830/-
- (ii) Unadjusted Advances: (Refunded 3,200/- to CAN on 2/5/2023)
- (iii) Total: 6,030/-

Anindila Dewn Signature of PI

Date 3/10/2-3

oux. D Signature Name:

(Head of the Finance)/ (With seal) Date Finance Officer Despur University

Signature Name: (Head of the Organisation)/ (With seal) Kegistrar Date Texpur University

GENERAL FINANCIAL RULES 2017 Ministry of Finance Department of Expenditure

Certified that I have satisfied myself that the conditions on which grants were sanctioned have been duly fulfilled/are being fulfilled and that I have exercised following checks to see that the money has been actually utilized for the purpose for which it was sanctioned:

- (i) The main accounts and other subsidiary accounts and registers (including assets registers) are maintained as prescribed in the relevant Act/Rules/Standing instructions (mention the Act/Rules) and have been duly audited by designated auditors. The figures depicted above tally with the audited figures mentioned in financial statements/accounts.
- (ii) There exist internal controls for safeguarding public funds/assets, watching outcomes and achievements of physical targets against the financial inputs, ensuring quality in asset creation etc. & the periodic evaluation of internal controls is exercised to ensure their effectiveness.
- (iii) To the best of our knowledge and belief, no transactions have been entered that are in violation of relevant Act/Rules/standing instructions and scheme guidelines.
- (iv) The responsibilities among the key functionaries for execution of the scheme have been assigned in clear terms and are not general in nature.
- (v) The benefits were extended to the intended beneficiaries and only such areas/districts were covered where the scheme was intended to operate.
- (vi) The expenditure on various components of the scheme was in the proportions authorized as per the scheme guidelines and terms and conditions of the grants-in-aid.
- (vii) It has been ensured that the physical and financial performance under. WOS-A... (name of the scheme has been according to the requirements, as prescribed in the guidelines issued by Govt. of India and the performance/targets achieved statement for the year to which the utilization of the fund resulted in outcomes given at Annexure I duly enclosed.
- (viii)The utilization of the fund resulted in outcomes given at Annexure II duly enclosed (to be formulated by the Ministry/Department concerned as per their requirements/specifications.)
- (ix) Details of various schemes executed by the agency through grants-in-aid received from the same Ministry or from other Ministries is enclosed at Annexure –II (to be formulated by the Ministry/Department concerned as per their requirements/specifications).

Date:

Place:

Signature

Name..... Chief Finance Officer (Head of the Finance)

Finance Officer Te::pur University (Strike out inapplicable terms) Signature

Rezistrar Tespur University